
Vishay High Power Products

High Performance Schottky Generation 5.0, 2 x 15 A

2 x 15 A

100 V

0.67 V

PRODUCT SUMMARY

I_{F(AV)}

 V_{R}

V_F at 15 A at 125 °C

FEATURES

- 175 °C high performance Schottky diode
- Very low forward voltage drop
- Extremely low reverse leakage
- Optimized V_F vs. I_R trade off for high efficiency
- · Increased ruggedness for reverse avalanche capability
- RBSOA available
- Negligible switching losses
- Submicron trench technology
- Full lead (Pb)-free and RoHS compliant devices
- Designed and qualified for industrial level

APPLICATIONS

- High efficiency SMPS
- Automotive
- High frequency switching
- Output rectification
- Reverse battery protection
- Freewheeling
- · Dc-to-dc systems
- · Increased power density systems

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL CHARACTERISTICS VALUES UNITS						
V _{RRM}		100	V			
V _F	15 Apk, T _J = 125 °C (typical, per leg)	0.63	v			
TJ	Range	- 55 to 175	°C			

VOLTAGE RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	30CTT100	UNITS	
Maximum DC reverse voltage	V _R	T _J = 25 °C	100	V	

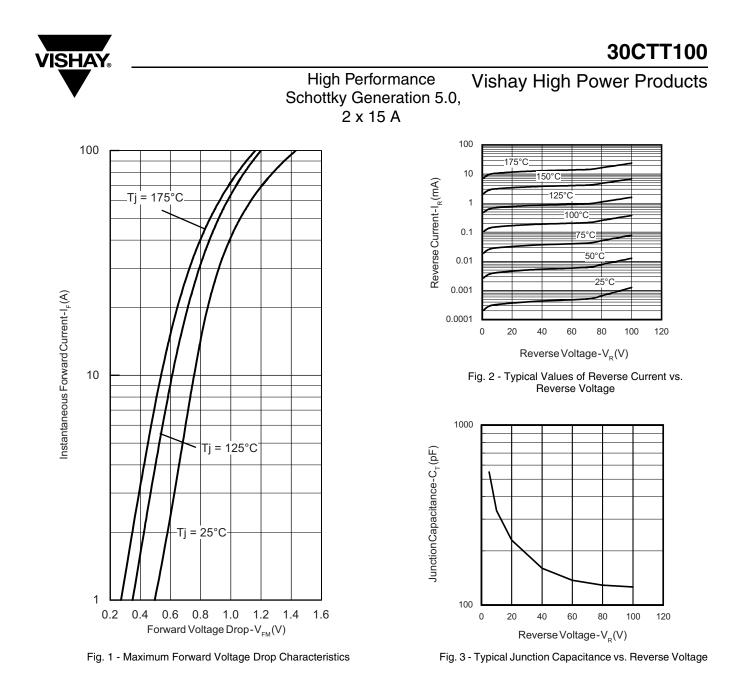
ABSOLUTE MAXIMUM RATINGS							
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum averageper legforward currentper device			EQ 9/ duty quele et T 144 °C rectorgule		15		
		I _{F(AV)}	50% utily cycle at $1_{\rm C} = 144$ C,	r cycle at T _C = 144 °C, rectangular waveform			
Maximum peak one cycle non-repetitive surge current per leg		I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	920	A	
			10 ms sine or 6 ms rect. pulse	V_{RRM} applied	240		
Non-repetitive avalanche energy per leg		E _{AS}	T _J = 25 °C, I _{AS} = 1.1 A, L = 60 mH		36	mJ	
Repetitive avalanche current per leg		I _{AR}	Limited by frequency of operation and time pulse duration so that $T_J < T_J$ max. I_{AS} at T_J max. as a function of time pulse See fig. 8		I _{AS} at T _J max.	A	

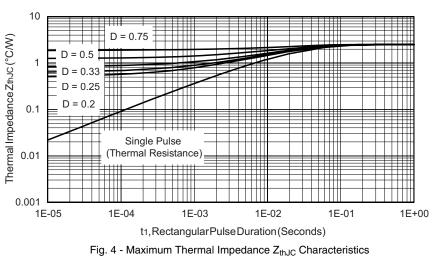
COMPLIANT

30CTT100

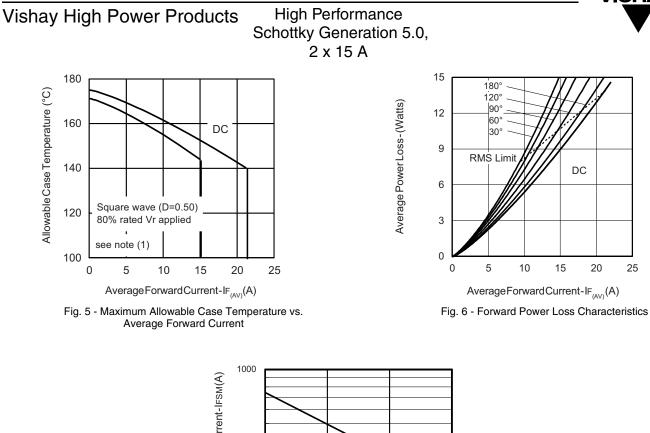
Vishay High Power Products

High Performance Schottky Generation 5.0, 2 x 15 A




ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITION	TYP.	MAX.	UNITS		
		15 A	T 05 %C	-	0.81	V	
Forward valtage drap per leg	V (1)	$T_{\rm J} = 25 ^{\circ}{\rm C}$	1j=25 C	-	0.92		
Forward voltage drop per leg	V _{FM} ⁽¹⁾	15 A	- T _J = 125 °C -	-	0.67		
		30 A		-	0.79		
Reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C		-	120	μA	
		T _J = 125 °C	$V_R = Rated V_R$	-	5	mA	
Junction capacitance per leg	CT	C_T $V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		550	-	pF	
Series inductance per leg	LS	Measured lead to lead 5 mm from package body		8.0	-	nH	
Maximum voltage rate of change	dV/dt	Rated V _R		-	10 000	V/µs	

Note


 $^{(1)}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	e	T _J , T _{Stg}		- 55 to 175	°C	
Maximum thermal resistar junction to case per leg	tance,		DC operation	2.5		
Maximum thermal resistar junction to case per device			DC operation	1.25	°C/W	
Typical thermal resistance case to heatsink) ,	R _{thCS}	Mounting surface, smooth and greased	0.5		
Approvimate weight				2	g	
Approximate weight				0.07	oz.	
minin				6 (5)	kgf ⋅ cm	
Mounting torque	maximum			12 (10)	(lbf ⋅ in)	
Marking device			Case style TO-220AB	30CT	T100	

30CTT100

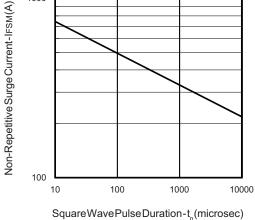
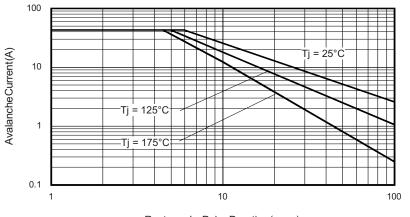


Fig. 7 - Maximum Non-Repetitive Surge Current

Note

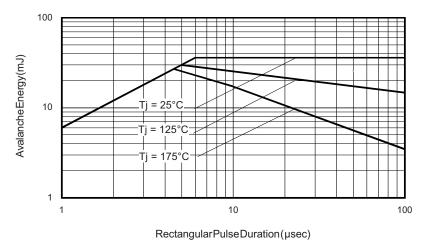
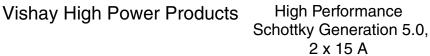

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} =$ Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at $V_{R1} = 80$ % rated V_R

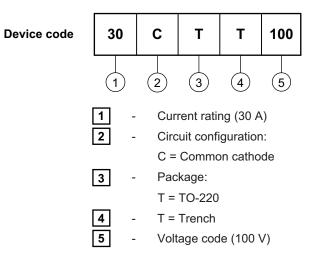
25

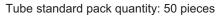
High Performance Vishay High Power Products Schottky Generation 5.0, 2 x 15 A

RectangularPulseDuration(µsec)

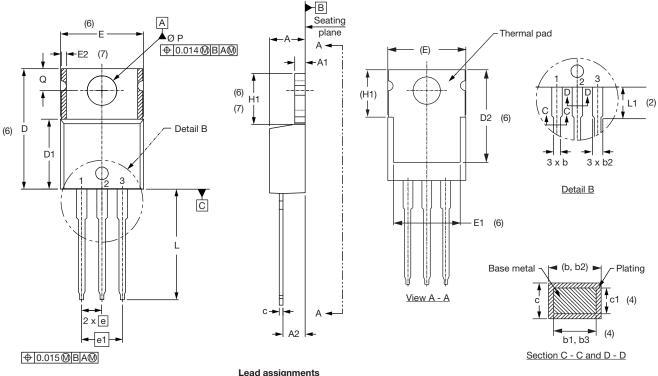
Fig. 8 - Reverse Bias Safe Operating Area (Avalanche Current vs. Rectangular Pulse Duration)

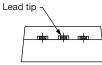




Fig. 9 - Reverse Bias Safe Operating Area (Avalanche Energy vs. Rectangular Pulse Duration)


30CTT100

ORDERING INFORMATION TABLE


LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95222				
Part marking information	http://www.vishay.com/doc?95225			



Vishay Semiconductors

TO-220AB

DIMENSIONS in millimeters and inches

.ead	assignments

Diodes

1. - Anode/open 2. - Cathode 3. - Anode

SYMBOL	MILLIN	MILLIMETERS		INCHES	
STWBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- ⁽³⁾ Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- $^{\left(4\right) }$ Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1

MILLIMETERS INCHES SYMBOL NOTES MIN. MAX. MIN. MAX. 10.51 0.414 10.11 0.398 3,6 Е E1 6.86 8.89 0.270 0.350 6 E2 0.76 0.030 7 --2.41 2.67 0.095 0.105 е 0.208 e1 4.88 5.28 0.192 H1 6.09 6.48 0.240 0.255 6,7 13.52 14.02 0.532 0.552 L L1 3.32 3.82 0.131 0.150 2 ØΡ 3.54 3.73 0.139 0.147 2.60 0.102 Q 3.00 0.118 90° to 93° 90° to 93° θ

Conforms to JEDEC outline TO-220AB

- (7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
- (8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.